Senin, 20 Oktober 2008

Pierre Curie

Pierre Curie (15 Mei 1859–19 April 1906) adalah seorang pionir dalam bidang kristalografi, magnetisme, dan radioaktivitas berkebangsaan Perancis.
Setelah menyelesaikan pendidikan sarjananya pada usia 18 tahun, ia bekerja sebagai seorang instruktur laboratorium. Pada tahun 1881, Pierre dan saudara lelakinya, Jacques berhasil mendemonstrasikan bahwa kristal-kristal dapat meleleh saat dialiri medan listrik. Hampir seluruh sirkuit listrik digital saat ini menggunakan langkah ini dalam bentuk osilator kristal.
Pierre Curie mempelajari ferromagnetisme, paramagnetisme, dan diamagnetisme untuk tesis doktoratnya, dan menemukan pengaruh suhu terhadap paramagnetisme yang kini dikenal sebagai Hukum Curie. Ia bekerja dengan istrinya, Marie Curie dalam mengisolasikan polonium dan radium. Mereka berdua adalah orang-orang pertama yang menggunakan istilah 'radioaktivitas', dan merupakan penggagas dalam bidang tersebut.
Pierre dan salah seorang muridnya juga adalah orang pertama yang menemukan tenaga nuklir, melalui identifikasi terhadap pengeluaran panas yang berkelanjutan dari partikel-partikel radium.
Bersama dengan istrinya, Marie, Pierre dianugerai Penghargaan Nobel dalam Fisika pada tahun 1903 sebagai "pengakuan terhadap jasa-jasa luar biasa yang telah mereka lakukan dalam penelitian mereka mengenai fenomena radiasi yang ditemukan oleh Professor Henri Becquerel."
Pierre meninggal dunia akibat kecelakaan kendaraan di Paris pada 19 April 1906.
Putri Pierre dan Marie Curie, Irène Joliot-Curie, serta menantu mereka, Jean Joliot-Curie juga adalah fisikawan-fisikawan yang terlibat dalam penelitian radioaktivitas.
Lihat galeri mengenai Pierre Curie di Wikimedia Commons.
• (en) Penghargaan kepada Pierre Curie di situs Nobel
• (en) Biografi resmi di situs Nobel
• (en) Artikel Nobel mengenai Pierre Curie
Diperoleh dari "http://id.wikipedia.org/wiki/Pierre_Curie"


Label:

Henri Becquerel


Antoine Henri Becquerel (Paris, 15 Desember 1852 – Le Croisic, 25 Agustus 1908) adalah salah seorang fisikawan asal Perancis yang menemukan radioaktivitas. Satuan ukur SI radioaktivitas Becquerel (Bq) dinamakan setelah tokoh ini.

Biography
Early life
Becquerel was born in Paris into a family which, including him and his son Jean, produced four generations of scientists. He studied science at the École Polytechnique and engineering at the École des Ponts et Chaussées. In 1890 he married Louise Désirée Lorieux

Career
In 1892, he became the third in his family to occupy the physics chair at the Muséum National d'Histoire Naturelle. In 1894, he became chief engineer in the Department of Bridges and Highways.
In 1896, while investigating phosphorescence in uranium salts, Becquerel accidentally discovered radioactivity. Investigating the work of Wilhelm Conrad Röntgen, Becquerel wrapped a fluorescent substance, potassium uranyl sulfate, in photographic plates and black material in preparation for an experiment requiring bright sunlight. However, prior to actually performing the experiment, Becquerel found that the photographic plates were fully exposed. This discovery led Becquerel to investigate the spontaneous emission of nuclear radiation.
Describing his method to the French Academy of Sciences on 24 January 1896, he said:
One wraps a Lumière photographic plate with a bromide emulsion in two sheets of very thick black paper, such that the plate does not become clouded upon being exposed to the sun for a day. One places on the sheet of paper, on the outside, a slab of the phosphorescent substance, and one exposes the whole to the sun for several hours. When one then develops the photographic plate, one recognizes that the silhouette of the phosphorescent substance appears in black on the negative. If one places between the phosphorescent substance and the paper a piece of money or a metal screen pierced with a cut-out design, one sees the image of these objects appear on the negative. … One must conclude from these experiments that the phosphorescent substance in question emits rays which pass through the opaque paper and reduces silver salts.[1][2]
In 1903, he shared the Nobel Prize in Physics with Pierre and Marie Curie "in recognition of the extraordinary services he has rendered by his discovery of spontaneous radioactivity"

Honours and awards


Image of Becquerel's photographic plate which has been fogged by exposure to radiation from a uranium salt. The shadow of a metal Maltese Cross placed between the plate and the uranium salt is clearly visible.
In 1908, the year of his death, Becquerel was elected Permanent Secretary of the Académie des Sciences. He died at the age of 55 in Le Croisic.
The SI unit for radioactivity, the becquerel (Bq), is named after him, and there is a Becquerel crater on the Moon and a Becquerel crater on Mars.
• Rumford Medal (1900)
• Helmholtz Medal (1901)
• Nobel Prize for Physics (1903)
• Barnard Medal (1905)

See also
• Antoine César Becquerel (his grandfather)
• A. E. Becquerel (his father)
• Jean Becquerel (his son)

References
1. ^ Henri Becquerel (1896). "Sur les radiations émises par phosphorescence". Comptes Rendus 122: 420–421.
2. ^ Comptes Rendus 122, 420 (1896), translated by Carmen Giunta. Accessed 10 September 2006.

External links
Henri Becquerel - Biography
Becquerel short biography and the use of his name as a unit of measure in the SI
Annotated bibliography for Henri Becquerel from the Alsos Digital Library for Nuclear Issues
Diperoleh dari http://id.wikipedia.org/wiki/Henri_Becquerel


Pieter Zeeman


Pieter Zeeman (25 Mei 1865 – 9 Oktober 1943) (IPA [ze:mɑn]) ialah fisikawan Belanda yang menerima Penghargaan Nobel dalam Fisika pada 1902 dengan Hendrik Antoon Lorentz atas penemuan efek Zeeman.

Zeeman lahir di Zonnemaire (di pulau Schouwen-Duiveland, provinsi Zeeland) dari Wilhelmina Worst dan Catharinus Farandinus Zeeman, seorang menteri Lutheran. Ia bersekolah di HBS di Zierikzee yang berdekatan dan kemudian belajar bahasa-bahasa klasik di gimnasium di Delft selama 2 tahun. Selama masa ini, ia menerbitkan laporan tentang aurora borealis yang terlihat dari Zonnemaire. Ia memasuki Universitas Leiden pada 1885, di mana ia belajar dengan Hendrik A. Lorentz dan Heike Kamerlingh Onnes dan menjadi asisten di laboratorium Heike Kamerlingh-Onnes pada 1895. Ia menerima gelar doktor pada 1893 untuk disertasinya mengenai yang disebut efek Kerr, untuk penelitian di mana ia menerima medali emas dari Hollandsche Maatschappij di tahun sebelumnya. Setelah setahun di Institut Kohlrausch, Strasbourg, ia menjadi privatdozent di Leiden dan menikahi Elisabeth Lebret, yang dengannya ia memiliki seorang putra dan 3 putri. Dari 1896 hingga pensiun, Zeeman berada di fakultas di Universiteit van Amsterdam (dosen, 1896; luar biasa, 1900; biasa, 1908). Pada 1908 ia menggantikan Johannes van der Waals sebagai direktur laboratorium fisika universitas itu, Lembaga Fisika.
Selama di Leiden, Zeeman menemukan sebuah efek yang dinamaI menurut namanya. Ia sedang mencari interaksi antara efek magnet dan optik. Michael Faraday telah mengamati medan magnetik pada garis spektrum di awal 1862, namun tanpa hasil positif. Zeeman mengulangi eksperimen itu, menggunakan garangan difraksi tenaga resolusi tinggi dan menemukan bahwa garis emisi natrium diperluas (1896). Hendrik Lorentz dan Zeeman menjelaskan fenomena itu dengan memprkirakan bahwa elektron (ditemukan di tahun sebelumnya oleh Joseph John Thomson) pindah dalam atom dan cahaya yang dipancarkan. Pengukuran frekuensi puncak garis yang meluas memungkinkannya menentukan perbandingan e/m. Di Amsterdam, di tahun berikutnya, Zeeman bisa memecah garis natrium ke dalam triplet, seperti yang diperkirakan oleh Lorentz. Untuk karya ini Zeeman dan Lorentz menerima Penghargaan Nobel dalam Fisika pada 1902.
Zeeman melanjutkan penelitianya mengenai efek Zeeman, namun keterbatasan laboratoriumnya di Amsterdam mempersulit hasil yang lebih akurat. Masalah ini tak terpecahkan hingga pembangunan laboratorium baru pada 1923 (sejak 1940 Laboratorium Zeeman). Ia juga mengukur kecepatan cahaya dalam medium bergerak, menunjukkan bahwa harga koefisien Fresnel bervariasi menurut panjang gelombang, perkiraan dari teori relativitas. Hanya setelah 1923 ia kembali pada pengukuran efek Zeeman, mengukur garis spektrum beberapa gas mulia dan rhenium. Zeeman menjabat sebagai sekretaris (1912-1920) dan ketua (1931) Divisi Fisika Koninklijke Nederlandse Akademie van Wetenschappen; sebagai pimpinan Commission Internationale des Poids et Mesures di Paris dari 1940 hingga 1943; dan sebagai rector magnificus Universitas Amsterdam dari 1920 hingga 1923. Ia menerima gelar doktor kehormatan dari 10 perguruan tingi dan penghargaan dari kelompok ilmiah paling bergengsi, termasuk Académie des Sciences, Royal Society, dan National Academy of Sciences. Dengan A.D. Fokker, ia menyunting karya H.A. Lorentz ('s-Gravenhage: Martinus NijhofF, 1934-1939).Ia meninggal di Amsterdam.
Lihat galeri mengenai Pieter Zeeman di Wikimedia Commons.
• Digital Library > History of Science and Scholarship in the Netherlands > Author details > Biography > Pieter Zeeman
Diperoleh dari http://id.wikipedia.org/wiki/Pieter_Zeeman

Label:

Hendrik Antoon Lorentz


Hendrik Antoon Lorentz
Hendrik Antoon Lorentz (1853-1928) ialah fisikawan Belanda yang memenangkan Penghargaan Nobel dalam Fisika bersama dengan Pieter Zeeman pada 1902.

Dilahirkan di Arnhem, Belanda. Ia belajar di Universitas Leiden. Pada usia 19 tahun ia kembali ke Arnhem dan mengajar di salah satu SMA di sana. Sambil mengajar, ia menyiapkan tesis doktoral yang memperluas teori James Clerk Maxwell mengenai elektromagnet yang meliputi rincian dari pemantulan dan pembiasan cahaya.
Pada 1878 ia menjadi guru besar fisika teoretis di Leyden yang merupakan tempat kerja pertamanya. Ia tinggal di sana selama 34 tahun, lalu pindah ke Haarlem. Lorentz meneruskan pekerjaannya untuk menyederhanakan teori Maxwell dan memperkenalkan gagasan bahwa medan elektromagnetik ditimbulkan oleh muatan listrik pada tingkat atom. Ia mengemukakan bahwa pemancaran cahaya oleh atom dan berbagai gejala optik dapat dirunut ke gerak dan interaksi energi atom.
Pada 1896, salah satu mahasiswanya Pieter Zeeman menemukan bahwa garis spektral atom dalam medan magnet akan terpecah menjadi beberapa komponen yang frekuensinya agak berbeda. Hal tersebut membenarkan pekerjaan Lorentz, sehingga mereka berdua dianugerahi Hadiah Nobel pada 1902.
Pada 1895, Lorentz mendapatkan seperangkat persamaan yang mentransformasikan kuantitas elektromagnetik dari suatu kerangka acuan ke kerangka acuan lain yang bergerak relatif terhadap yang pertama meski pentingnya penemuan itu baru disadari 10 tahun kemudian saat Albert Einstein mengemukakan teori relativitas khususnya.
Lorentz (dan fisikawan Irlandia G.F. Fitzgerald secara independen) mengusulkan bahwa hasil negatif eksperimen Michelson-Morley bisa dipahami jika panjang dalam arah gerak relatif terhadap pengamat mengerut. Eksperimen selanjutnya memperlihatkan bahwa meski terjadi pengerutan, hal itu bukan karena penyebab yang nyata dari hasil Michelson dan Edward Morley. Penyebabnya ialah karena tiadanya 'eter' yang berlaku sebagai kerangka acuan universal.
Lihat galeri mengenai Hendrik Antoon Lorentz di Wikimedia Commons.
Diperoleh dari http://id.wikipedia.org/wiki/Hendrik_Antoon_Lorentz





Label:

Wilhelm Conrad Röntgen


Wilhelm Conrad Röntgen (27 Maret 1845 – 10 Februari 1923) ialah fisikawan Jerman yang merupakan penerima pertama Penghargaan Nobel dalam Fisika, pada 1901, untuk penemuannya pada sinar X, yang menggembar-gemborkan zaman fisika modern dan merevolusionerkan kedokteran diagnostik.
Rontgen belajar politeknik di Zurich dan kemudian guru besar fisika di Universitas Strasbourg (1876-79), Giessen (1879-88), Wurzburg (1888-1900), dan Munich (1900-20). Penelitiannya juga termasuk karya pada elastisitas, gerak pipa rambut pada fluida, panas gas tertentu, konduksi panas pada kristal, penyerapan panas oleh gas, dan piezoelektrisitas.
Pada 1895, saat mengadakan percobaan dengan aliran arus listrik dan tabung gelas yang dikosongkan sebagian (tabung sinar katode), Rontgen mengamati bahwa potongan barium platinosianida yang berdekatan melepaskan sinar saat tabung itu dioperasikan. Ia merumuskan teori bahwa saat sinar katode (elektron) menembus dinding gelas tabung, beberapa radiasi yang tak diketahui terbentuk yang melintasi ruangan, menembus bahan kimia, dan menyebabkan fluoresensi. Pengamatan lebih lanjut mengungkapkan bahwa kertas, kayu, dan aluminum, di antara bahan lain, transparan pada bentuk baru radiasi ini. Ia menemukan bahwa itu mempengaruhi plat fotografi, dan, sejak tidak secara nyata menunjukkan beberapa sifat cahaya, seperti refleksi atau refraksi, secara salah ia berpikir bahwa sinar itu tak berhubungan pada cahaya. Dalam pandangan pada sifat tak pasti itu, ia menyebut fenomena radiasi X, walau juga dikenal sebagai radiasi Rontgen. Ia mengambil fotografi sinar-X pertama, dari bagian dalam obyek logam dan tulang tangan istrinya.
• Wilhelm Conrad Rontgen
Diperoleh dari "http://id.wikipedia.org/wiki/Wilhelm_Conrad_Röntgen"
Bisakah pembaca bayangkan andaikata dunia tak punya alat Rontgen? Nyaris mustahil! Wilhelm Conrad Rontgen si penemu sinar X dilahirkan tahun 1845 di kota Lennep, Jerman. Dia peroleh gelar doktor tahun 1869 dari Universitas Zurich. Selama sembilan belas tahun sesudah itu, Rontgen bekerja di pelbagai universitas, dan lambat laun peroleh reputasi seorang ilmuwan yang jempol. Tahun 1888 dia diangkat jadi mahaguru bidang fisika dan Direktur Lembaga Fisika Universitas Wurburg. Di situlah, tahun 1895, Rontgen membuat penemuan yang membuat namanya kesohor.
Tanggal 8 Nopember 1895 Rontgen lagi bikin percobaan dengan "sinar cathode." Sinar cathode terdiri dari arus electron. Arus diprodusir dengan menggunakan voltase tinggi antara elektrode yang ditempatkan pada masing-masing ujung tabung gelas yang udaranya hampir dikosongkan seluruhnya. Sinar cathode sendiri tidak khusus merembes dan sudah distop oleh beberapa sentimeter udara. Pada peristiwa ini Rontgen sudah sepenuhnya menutup dia punya tabung sinar cathode dengan kertas hitam tebal, sehingga biarpun sinar listrik dinyalakan, tak ada cahaya yang bisa terlihat dari tabung. Tetapi, tatkala Rontgen menyalakan arus listrik di dalam tabung sinar cathode, dia terperanjat melihat bahwa cahaya mulai memijar pada layar yang terletak dekat bangku seperti distimulir oleh sinar lampu. Dia padamkan tabung dan layar (yang terbungkus oleh barium platino cyanide) cahaya berhenti memijar. Karena tabung sinar cathode sepenuhnya tertutup, Rontgen segera sadar bahwa sesuatu bentuk radiasi yang tak kelihatan mesti datang dari tabung ketika cahaya listrik dinyalakan. Karena ini merupakan hal yang misterius, dia sebut radiasi yang tampak itu "sinar X." Adapun "X" merupakan lambang matematik biasa untuk sesuatu yang tidak diketahui.
Tergiur oleh penemuannya yang kebetulan itu, Rontgen menyisihkan penyelidikan-penyelidikan lain dan pusatkan perhatian terhadap penelaahan hal-ihwal yang terkandung dalam "sinar X." Sesudah beberapa minggu kerja keras, dia menemukan bukti-bukti lain seperti ini: (1) sinar X bisa membikin sinar pelbagai benda kimia selain "barium platinocyanide." (2) sinar X dapat menerobos melalui pelbagai benda yang tak tembus oleh cahaya biasa. Khusus Rontgen menemukan bahwa sinar X dapat menembus langsung dagingnya tetapi berhenti pada tulangnya. Dengan jalan meletakkan tangannya antara tabung sinar cathode dan layar yang bersinar, Rontgen dapat melihat di layar bayangan dari tulang tangannya. (3) sinar X berjalan menurut garis lurus; tidak seperti partikel bermuatan listrik, sinar X tidak terbelokkan oleh bidang magnit.

Sinar X memberi sumbangan besar dan kemajuan dunia kedokteran
Bulan Desember 1895 Rontgen menulis kertas kerja pertamanya mengenai sinar X. Laporannya dalam waktu singkat menggugah perhatian dan kegemparan. Dalam tempo beberapa bulan, beratus ilmuwan melakukan penyelidikan sinar X, dan dalam tempo setahun sekitar 1000 kertas kerja diterbitkan tentang masalah itu! Salah seorang ilmuwan yang penyelidikannya langsung bersandar dari hasil penemuan Rontgen adalah Antoine Henri Becquerel. Orang ini, meskipun maksud utamanya menyelidiki sinar X, justru menemukan fenomena penting tentang radioaktivitas.
Secara umum, sinar X bekerja bilamana enerji tinggi elektron mengenai sasaran. Sinar X itu sendiri tidak mengandung elektron, tetapi gelombang elektron magnetik. Oleh karena itu pada dasarnya dia serupa dengan radiasi yang dapat terlihat mata (yaitu gelombang cahaya), kecuali panjang gelombang sinar X jauh lebih pendek.
Penggunaan sinar X yang paling dikenal --tentu saja-- di bidang pengobatan dan diagnosa gigi. Penggunaan lain adalah di bidang radioterapi, di mana sinar X digunakan untuk menghancurkan tumor ganas atau mencegah pertumbuhannya.
Sinar X juga banyak digunakan di pelbagai keperluan industri. Misalnya, bisa digunakan buat ukur tebal sesuatu benda atau mencari kerusakan yang tersembunyi. Sinar X juga berfaedah di banyak bidang penyelidikan ilmiah, mulai dari biologi hingga astronomi. Khususnya, sinar X menyuguhkan para ilmuwan sejumlah besar informasi yang berkaitan dengan atom dan struktur molekul.
Kendati begitu, orang janganlah berlebih-lebihan menilai arti penting Rontgen. Memang benar, penggunaan sinar X membawa banyak manfaat, tetapi orang tidak bisa berkata dia telah merombak keseluruhan teknologi kita, seperti halnya penemuan Faraday atas pembuktian elektro magnetik. Begitu pula orang tidak bisa bilang penemuan sinar X benar-benar merupakan arti penting yang mendasar dalam teori ilmu pengetahuan. Sinar ultraviolet (yang panjang gelombangnya lebih pendek ketimbang cahaya yang tampak oleh mata) telah diketahui orang hampir seabad sebelumnya. Adanya sinar X --yang punya persamaan dengan gelombang ultraviolet, kecuali panjang gelombangnya masih lebih pendek-- masih berada dalam kerangka fisika klasik. Di atas segala-galanya, saya pikir layak menempatkan arti penting Rontgen di bawah Becquerel yang penemuannya lebih punya makna penting yang mendasar.
Rontgen tak punya anak, karena itu dia dan istrinya mengangkat anak seorang gadis. Tahun 1901 Rontgen menerima Hadiah Nobel untuk bidang fisika, yang untuk pertama kalinya diberikan untuk bidang itu. Dia tutup usia di Munich, Jerman tahun 1923.
http://www.accessexcellence.org/AE/AEC/CC/historical_background.html

Label: