Rabu, 04 Februari 2009

Perahu Mikro Dapat Membawa Paket Kecil

Cheng Luo, insinyur dari University of Texas at Arlington, mengingat ketika masih anak-anak, ia bermain dengan perahu kayu mainan yang bergerak ketika tetesan minyak ditaruh dibelakang perahu. Ketika minyak menetes ke air, maka akan terbentuk tegangan permukaan yang lebih kecil daripada bagian depan perahu, sehingga perahu terdorong kedepan. Dorongan berdasar tegangan permukaan ini disebut efek Marangoni

Kini, Luo, professor mekanika dan teknik pesawat, bersama dengan mahasiswa PhD Hao Li, dan Xinchuan Liu,melihat kembali perahu kayu untuk mengkaji apakah mekanismenya dapat berguna untuk transportasi pada system mikrofluida.

“Ketika saya melihat anak saya bermain dengan mainan dan tersenyum lebar, saya sering teringat masa kecil saya dulu,” sebut Luo pada PhysOrg.com. “Suatu hari, ide mainan perahu ini terlintas dipikiran saya, saat itu untuk iseng saja. Kemudian ketika saya mengkaji lebih dalam, saya sadar bahwa, selain sebagai mainan, perahu kecil ini mampu menjadi penyalur barang dan deteksi indera. Mereka bisa digunakan untuk mengirim barang ke lokasi tertentu pada saluran mikro untuk analisis biokimia, atau membawa sensor pada cairan untuk mendeteksi zat beracun.”



Tapi dengan ukuran hanya beberapa millimeter, perahu mikro membutuhkan desain dan teknik rancangan yang berbeda dari yang digunakan pada perahu ukuran konvensional. Peneliti telah menginvestigasi beberapa teknik fabrikasi mikro untuk objek kecil ini, meski banyak pendekatan meliputi system dan struktur yang rumit.

Tapi metode dorongan berdasarkan tegangan permukaan. Seperti perahu yang didorong minyak, dapat memberi alternative lebih sederhana untuk mendorong benda ukuran mikro. Dan seperti yang ditunjukkan oleh peneliti Texas, metode ini memberi mobilitas yang baik, dengan perahu mikro dapat mencapai kecepatan 30 cm per sekon.

“Metode dorongan ini memanfaatkan perbedaan tegangan permukaan pada bagian depan dan belakang kapal,” kata Luo. “Ini hanya membutuhkan tambahan bahan bakar pada reservoir perahu mikro. Perahu bergerak sendiri. Seolah metode ini mengeliminasi penggunaan sistem yang rumit, seperti baling-baling, jangkar dan sistem control, seperti yang ada pada perahu besar. Lebih lanjut, ini tidak membutuhkan peralatan eksternal untuk membuat gaya piezoelektrik, termal, elektrostatik, atau gaya magnetostatik, seperti yang biasa digunakan pada aplikasi fluida mikro untuk menggerakan fluida.”

Pada penelitiannya, mereka membuat perahu mikro 19.5-mg-sederhana dari dua lapis polimer SU-8. Karena SU-8 memiliki kepadatan sedikit lebih tinggi dari air, tegangan permukaan berperan penting untuk menjaga perahu mengambang. Meski perahu mengapung ketika diletakkan diatas air, tetapi ketika ditekan pasti tenggelam karena kerapatan yang lebih besar. Memakai UV litograpi, peneliti mengetsa reservoir dan pemercik pada lapisan atas perahu untuk menahan dan mendispersi isopropil alkohol (IPA), bahan bakar yang dipilih. Seperti minyak, IPA memiliki tegangan permukaan lebih kecil dari air dan mengakibatkan kontaminasi yang lebih kecil sehingga ideal untuk percobaan.

Setelah mengisi 1.49-mikroliter-reservoir perahu mikro, percobaan dilakukan pada saluran air dengan kedalaman dan panjang yang berbeda. Ditemukan bahwa pada air yang lebih dangkal, kecepatan perahu mikro lebih tinggi. Perbedaan kecepatan, sebagian disebabkan oleh resisten pada perahu yang lebih besar di air dalam. Karena kanal menyempit diatas, jarak antara perahu dan dinding kanal lebih kecil daripada jarak perahu dengan dasar ketika kedalaman bertambah. Kombinasi ini meningkatkan resisten perahu, dan membuatnya lebih lama mencapai ujung kanal. Kemudian, lamanya waktu tempuh membuat air dan IPA bercampur dan makin memperlambat perahu.
Menggerakan perahu dengan metode ini dapat diaplikasikan dalam banyak hal. Seperti dijelaskan Luo, studi lebih lanjut tentang gerakan di saluran dapat memberi info penting tentang perahu baik besar maupun kecil.

“Pergerakan perahu makro di kanal yang sempit dan dekat dengan pelabuhan memiliki beberapa hal umum yang sama dengan perahu mikro; perahu bergerak di perairan dangkal atau dekat tepi sungai,” katanya. “ Mengingat pertimbangan biaya eksperimen, kapal dengan skala besar sering di modelkan dengan perahu kecil, yaitu sepersepuluh atau bahkan seperseratus lebih kecil dari ukuran sebenarnya. Saya sedang berpikir menggunakan perahu mikro ini untuk memainkan beberapa aturan pada permodelan kapal. Alasan dibalik ini sangat sederhana. Mereka lebih kecil dari permodelan kapal, dan biaya untuk membuat dan tesnya juga lebih efektif.”

Ia menambahkan, “ kesuksesan perkembangan perahu mikro ini akan membentuk sebuah dasar untuk mengembangkan kehidupan mikro “bawah laut”, dan untuk perkembangan lebih lanjut pada penanaman “bawah laut”, yang mampu berjalan di dalam pembuluh darah untuk penyebaran obat, dan diagnosis dan pengobat suatu penyakit.”



Label:

Biofuel: Penggunaaan Jamur Meningkatkan Proses Pengolahan Jagung ke Etanol

Menumbuhkan jamur dari sisa produksi etanol bisa menghemat energi, mendaur lebih banyak air dan meningkatkan pakan ternak yang merupakan bagian dari produksi bahan bakar, menurut tim peneliti dari Universitas Iowa State dan Universitas Hawaii.

“Proses ini akan mengubah produksi etanol pada tumbuhan yang sangat kering sehingga biaya energinya bisa dikurangi hingga sepertiganya”, kata Hans van Leeuwen, seorang profesor sipil, teknik konstruksi dan lingkungan dan pemimpin proyek penelitian tersebut.

Van Leeuwen dan peneliti lainya mengembangkan teknologi ini -- Anthony L. Pometto III , seorang profesor nutrisi manusia dan sains makanan; Mary Rasmussen, seorang mahasiswa S1 teknik lingkungan dan teknologi sumber energi biologi, dan Samir Khanal, seorang asisten riset profesor Iowa State di bidang biosains molekular dan tenik biologi di Universitas Hawai, yang baru-baru ini memenangkan hadiah utama tahun 2008 untuk peneliti tingkat universitas dari American Academy of Environmental Engineers untuk proyek ini.

“ Pemilihan pemenang penghargaan ini dipilih oleh panel independen yang terdiri dari para ahli yang memiliki pengetahuan luas tentang tantangan modern dalam masalah kehidupan manusia dan proteksi lingkungan,” demikian pernyataan akademi.”… Inovasi dan performa mereka menggambarkan peran penting insinyur lingkungan untuk planet yang sehat.

Proyek Iowa State difokuskan pada penggunaan jamur untuk membersihkan dan mengembangkan proses produksi etanol kering. Proses ini mengeringkan biji jagung dan menambah air dan enzim. Enzim ini mengubah tepung menjadi gula. Gula kemudian difermentasi dengan ragi menghasilkan etanol.

Bahan bakar diambil dengan distilasi, tapi ada sisa 6 galon per galon yangg diproduksi. Sisa itu terdiri dari bahan padat dan organik lain. Bahan padat itu dihilangkan dengan sentrifugasi dan dikeringkan menjadi pakan ternak

Sisa cairan ini, masih mengandung sedikit padatan, sejenis larutan organik dari jagung dan fermentasi sama halnya juga enzim. Karena larutan dan padatan dapat bercampur pada produksi etanol, hanya 50 % dari sisa cairan ini yang bisa didaur ulang kembali pada produksi etanol. Sisa dari evaporasi dan penyulingan menghasilkan hasil penyulingan kering yang dapat larut.

Para peneliti menambahkan jamur, Rhizopus microsporus ke sisa cairan dan menemukan jamur tersebut tumbuh. Jamur memindahkan hampir 80 % dari material organik dan semua padatan dalam cairan itu, membuat air dan enzim dalam cairan dapat didaur ulang untuk produksi.

Jamur juga bisa dipanen. Jamur merupakan makanan yang kaya akan protein, khususnya asam amino dan nutrisi lainya. Jamur bisa dikeringkan dan dijual sebagai stok makanan suplemen. Atau jamur juga bisa disuling dengan pengeringan yang sangat tinggi, sehingga menaikkan kualitasnya sebagai stok makanan suplemen dan membuatnya lebih cocok untuk makanan babi dan ayam.

Van Leeuwen menyebutkan hal ini bisa menolong produsen etanol Amerika dari biaya dan energi produksi yang tinggi pada tingkat produksi saat ini, yaitu:

Menghapuskan keperluan untuk menguapkan cairan akan menghemat biaya produksi etanol hingga $800 juta setahun.

Membiarkan lebih banyak pendaur-ulangan air akan mengurangi konsumsi air industri sebanyak 10 milyar galon per tahun. Sehingga produsen dapat mendaur ulang enzim-enzim di dalam cairan, dan menghemat sekitar $60 juta per tahun.

Menambahkan nilai dan bahan gizi ke pakan ternak yang dihasilkan oleh produksi etanol akan menumbuhkan pemasaran pakan ternak sekitar $400 juta per tahun.

Dan proses penelitian terhadap jamur meningkatkan keseimbangan energi tehadap produksi etanol dengan mengurangi energi masukan sehingga diperoleh lebih banyak energi.

Van Leeuwen juga memperkirakan bahwa akan membutuhkan biaya investasi $11 juta untuk awal penggunaan proses-proses dalam produksi etanol ini yang akan menghasilkan 100 juta galon bahan bakar per tahun. Tetapi, ia menyebutkan bahwa penghematan-penghematan dana yang disebutkan tadi baru bisa menutup investasi awal dalam waktu sekitar enam bulan.

Proyek riset Iowa State ini didukung oleh bantuan dana sebesar $78.806 dari Grow Iowa Values Fund, suatu program pembangunan ekonomi negara bagian, dan $80,000 dari Departemen Pertanian Amerika Serikat melalui Iowa Biotechnology Byproducts Consortium.

Peneliti-peneliti telah mengajukan hak paten di bidang teknologi dan sedang mencari investor-investor untuk mengkomersilkan penemuan tersebut. Dan selagi proses itu perlu dibuat terjamin pada skala yang lebih besar, ada harapan yang tinggi yang dapat dilakukan untuk meningkatkan efisiensi dari produksi etanol. "Kita akan menghemat biaya dan energi produsen-produsen etanol," kata Pometto. "Itulah garis dasar."


Label:

Ilmuan Meneliti Memori Lebah


Lebah madu bisa mengingat wangi bunga yang mereka kunjungi dengan mengalokasikan jenis-jenis memori yang berbeda pada otak mereka yang kecil, dugaan para peneliti.

Profesor Lesley Rogers dari Universitas New England di Armidale, Australia dan Profesor Giorgio Vallortigara dari Universitas Trento di Itali melaporkan penemuan mereka minggu ini ke jurnal Plo ONE.

Para peneliti menunjukkan bahwa otak lebah dibagi atas dua bagian dengan fungsi yang berbeda yang dalam hal ini mengingatkan kita kepada otak manusia.

Dalam penelitian mereka, Rogers dan Vallortigara melatih lebah untuk mengenal rasa manis yang menyenangkan dengan aroma lemon dan rasa asin yang tidak menyenangkan dengan aroma vanila.

Setelah lebah dilatih untuk mengabaikan belalai mereka ketika mencium aroma lemon, namun tidak ketika mereka mencium aroma vanila, peneliti mencoba apa yang terjadi terhadap memori lebah ketika satu dari antena mereka tidak berfungsi.

Rogers dan Vallortigara menutup antena sebelah kiri atau kanan lebah dengan bahan yang dasarnya dari getah untuk menghentikan mendeteksi bau-bauan.

“Ketika kami meminta lebah untuk mengingat kembali dengan antena kiri yang tertutp, lebah bisa mengingat dengan baik memori dari dua aroma selama lebih kurang tiga jan, namun setelah itu tidak begitu baik,” kata Rogers. “Di lain sisi, jika kita menutup antena kanan dan mengetes lebah untuk meningat, awalnya tidak begitu baik, namun setelah enam jam lebah bisa mengingat kembali”.

Pola yang sama benar-benar terjadi ketika peneliti memberikan wangi-wangian pada bagian kiri atau bagian kanan lebah, tanpa menutup salah satu antenanya.


Jangka Pendek dan Jangka Panjang

Hasil dari percobaan ini menduga bahwa antena kanan dan hubungan struktur otak membentuk basis untuk jangka pendek dan memori sementara, sementra antena kiri mendukung untuk memori jangka panjang.

“Jika dibandingkan dengan manusia dan hewan besar lainnya, otak lebah sangat simple”, kata Rogers. “Namun dengan otak yang simple lebah bisa melakukan hal-hal yang sangat komples. Lebah bisa belajar hal-hal yang hebat yang kita pikir tidak mungkin sebelumnya,” katanya. “ Jelas antena lebah sangat efisien untuk otak lebah”.

Sampai dengan pertengahan tahun1970, ilmuan mengira hanya manusia yang memiliki otak yang terbagi dua dengan aturan yang berbeda. Sejak itu, para peneliti menunjukkan bahwa semua hewan vertebrata memiliki dua struktur bagian pada otak mereka. Dan baru-baru ini, pada serangga, seperti lebah, juga memiliki otak yang memiliki devisi fungsi yang terbagi dua bagian.

“Di sini kemungkinan ada sesuatu yang sangat mendasar tentang perbedaan fungsi kontrol bagian kanan dan kiri dan penyebab perbedaan formasi memori,” kata Rogers.


Label:

Buih Capucino Seperti Sebuah Superkonduktor??


Untuk melihat perkembangan terakhir superkonduktor tipe l, lihatlah buih pada secangkir cappucino. Tim fisikawan dari laboratorium Ames Departeman Energi U.S. dan para pelajar menemukan bahwa penyusunan domain magnetik seperti buih mempunyai pola yang sama seperti buih sabun atau buih susu pada kopi.

Kemiripan antara pola bentuk poligonal busa konvesional dengan “suprafroths” adalah polanya dibentuk oleh medan magnet di sebuah superkonduktor. Hal ini membuat suprafroth sebagai sebuah model untuk sistem studi buih.

“Ada beberapa hukum statistik yang mengatur kelakuan buih dan supraforth memenuhinya", tutur Ruslan Prozorov fisikawan dan investigator utama laboratorium Ames. "Kita dapat mengaplikasikan apa yang kita tahu dari suprafroth pada buih lainnya dan sistem buih kompleks”.
Prozorov menemukan pola supraforth tahun lalu, ia melihat desain seperti busa yang tak terduga ketika ia menaruh medan magnet pada sampel sistem magneto-optik. Karena superforth telah digunakan pada istilah produk lain maka Prozorov menyebutnya suprafroth pada tahun 1930, superkonduktor disebut suprakonduktor.

Untuk membantu mengenali suprafroth, Prozorov dibantu fisikawan senior laboratorium Ames, Paul Canfield, asisten lab musim panas Andrew Fidler dan mahasiswa S2 Jacob Hoberg. Canfield yang ahli dalam pembentukan pola alami, mengusulkan pembandingan pola suprafroth dengan buih biasa.

“Tahun lalu kami berdiri didekat poster pola kesetimbangan timbal milik Ruslan dan saya mendiskusikan salah satu gambarnya ketika istirahat”, kata Canfield. “Saya mengenali bahwa pola yang dia perlihatkan untuk sampel timbal persis sama dengan gambar klasik buih. Awalnya Ruslan skeptis tetapi beberapa minggu setelahnya kami menyadari betapa banyaknya kemiripan antara suprafroth dan buih biasa" lanjut canfield

Analisa lanjut menunjukkan bahwa suprafroth berlaku seperti buih lain meski ada perbedaan besar pada mikroskopis; dinding sel buih biasa terdiri dari bahan seperti deterjen air atau plastik sementara dinding suprafroth terdiri dari timbal superkonduktor.

Satu kemiripan suprafroth dan buih biasa adalah proses koarsen, yaitu ketika sel buih tumbuh atau menciut sebelum hilang. Pada kehidupan sehari-hari, proses ini dapat dilihat pada tempat cuci piring yang penuh buih sabun yang pecah dan hilang. Proses ini sama pada suprafroth ketika medan magnet meningkat, menunjukkan bahwa suprafroth memenuhi hukum John von Neumann, konsep yang disetujui secara fisis yg menspesifikasi nilai pertumbuhan atau penciutan sel buih.

Berlakunya hukum von Neumann pada suprafroth menunjukkan bahwa fase buih adalah sifat intrinsik superkonduktor," sebut Prozorov. "Suprafroth seperti busa biasa, mematuhi konsep pengisian daerah hingga jika ingin menutup bidang poligon dengan tiga tiang, maka poligon yang paling mungkin adalah heksagon,” lanjutnya.

Fisikawan mempercayai hubungan dua aturan statistik buih. Pengertian umum menunjukkan bahwa heksagon yang bersisi enamlah yang menentukan apakah sel buih tumbuh atau menciut selama koarsen. Tetapi analisa tim laboratorium Ames telah memisahkan dua konsep ini pada suprafroth.

“Pada suprafroth, kami menemukan bahwa hubungan dua ide itu adalah kebetulan, tidak ada korespondensi ketat antara tipe dinding sel paling stabil dan jumlah umum sisi buih,” sebut Prozorov.

Pada suprafroth sel setiap sisi tumbuh sebanding dengan medan magnet, penemuan ini memberi kontribusi penting untuk studi umum buih. Tapi kontribusi terbesar suprafroth pada fisis umum buih adalah sebagai sistem model untuk semua studi buih. Suprafroth menawarkan pembalikan, keuntungan khusus dibanding buih biasa.

“Pada buih sehari-hari seperti sabun, yang mewakili perubahan adalah waktu,” sebut Prozorov. “Kita harus menunggu busa mengering dan itu butuh waktu serta tak dapat dibalikkan. Karena waktu tak bisa dibalik”. “Ketika buih pecah maka sifat kimia dan fisisnya berubah sehingga tak layak untuk percobaan”, lanjut Prozorov. “Pada situasi ideal kita hanya ingin mempelajari sifat pola buih dan kompleksitasnya. Kita ingin dapat merubah parameter dan struktur buih dengan mudah”.

Keadaan ideal eksperimen buih dapat dicapai pada suprafroth karena hal yang menyebabkan sel fase superkonduktor adalah medan magnet dan suhu, parameter yang dapat dibalik. “Keduanya dapat diatur di lab, kata Prozorov. “Mereka dapat dinaikturunkan sehingga kita dapat mempelajari sifat statistik murni buih tanpa masalah dengan tidak bisa dibaliknya waktu atau perubahan sifat kimia”. Pembandingan prozorov tentang suprafroth juga memberi kontribusi penting pada studi superkonduktor.

“Analisa statistik menunjukkan bahwa suprafroth berlaku seperti buih biasa, hal yang baru untuk superkonduktifitas”, sebut Prozorov. “Baru tahun lalu pola ini ditemukan dan sekarang terbukti bahwa keadaan buih adalah sifat intrinsik timbal superkonduktor. Ini adalah terobosan besar bagi fisika buih umum dan pertumbuhan fisika superkonduktor”.

“Pada fisika, jika dapat menemukan sistem model yang memiliki pola mirip, seperti suprafroth, dan mempelajarinya maka akan didapat info tambahan tentang perilaku sistem sangat komplek seperti galaksi, geofisis dan biofisis”, sebut Prozorov. “Jadi intinya adalah mempelajari fisis dari buih sabun atau suprafroth dapat membantu memahami pertanyaan sulit dan komplek tentang kehidupan sekitar kita”.

Canfield mengatakan bahwa proyek suprafroth adalah studi kasus untuk bagaimana kolaborasi laboratorium penelitian harus dilakukan. “Kolaborasi yang berbuah ini sering terjadi di laboratorium Ames sebagai bagian kolaborasi dan interaksi ekstensif, Ruslan dan saya selalu mendiskusikan ide bahan dan hasil setiap saat”.


Label:

Teknologi Ikan : Pembangkit Listrik Tenaga Air Arus Rendah (Low Water-Current Power Generator)


Arus pergerakan air sungai dan laut yang pelan bisa dilaporkan bisa menjadi sumber energi alternatif baru yang terjangkau dan dapat dihandalkan. Seorang insinyur dari Universitas Michigan telah membuat sebuah mesin yang bekerja selayaknya seekor ikan yang mampu mengubah getaran destruktif dari aliran fluida menjadi tenaga listrik.

Mesin tersebut dinamakan VIVACE (Vortex Induced Vibrations for Aquatic Clean Energy).

VIVACE merupakan alat yang bisa memproduksi energi dari arus air di seluruh dunia karena alat tersebut bekerja pada arus air yang mengalir dengan kecepatan kurang dari 2 knot (2 mil per jam). Hampir semua arus air di bumi berkecepatan kurang dari 3 knot. Turbin dan kincir air membutuhkan kecepatan air minimal 5-6 knot untuk bisa beroperasi dengan efisien.


Mesin VIVACE ini tidak tergantung pada gelombang, pasang-surut air, turbin ataupun bendungan. Dia adalah suatu sistem hidrokinetik yang sangat unik, yang mengandalkan "getaran-getaran yang diinduksi pusaran (vortex induced vibrations)".

Getaran-getaran yang diinduksi pusaran ini merupakan getaran yang dihasilkan apabila sebuah benda berbentuk bulat atau melengkung dimasukkan dalam fluida yang bergerak, yang bisa berupa air atupun udara. Adanya benda tersebut akan menimbulkan pusaran dengan kecepatan sebesar aliran fluida tersebut. Akhirnya akan terbentuk arus edy, atau pusaran, pada bagian belakang benda tersebut. Pusaran ini ternyata menggerakkan benda, mendorong dan menarik ke arah kiri-kanan atau atas-bawah, tegak lurus dengan arah arus.


Vibrasi serupa telah merobohkan jembatan Tacoma Narrows di Washington pada tahun 1940 dan tower pendingin pada pembangkit listrik Ferrybridge di England pada tahun 1965. Pada air, vibrasi seperti ini sering merusak dermaga, kilang minyak dan bangunan-bangunan pesisir.

"Selama 25 tahun terakhir, para insinyur - termasuk saya - telah mencoba untuk mengurangi vibrasi yang diinduksi pusaran ini. Namun, sekarang di Michigan kami melakukan hal sebaliknya. Kami memacu vibrasi dan menuai kekuatan destruktifnya yang kuat," kata pengembang VIVACE Michael Bernitsas, seorang profesor di Departemen U-M Teknik Kelautan dan Arsitektur Angkatan Laut.

Ikan telah lama diketahui memiliki kemampuan untuk memanfaatkan pusaran air yang menginduksi vibrasi ini dengan baik.

"VIVACE ini meniru teknologi ikan tersebut," kata Bernitsas. "Ikan meliukkan badannya untuk meluncur di antara pusaran-pusaran yang berada didepan badannya. Kekuatan otot mereka sendiri tidak akan mampu melontarkan badan mereka di air dengan kecepatan tersebut oleh karenanya mereka berenang pada alur ikan yang lain."

Meskipun mesin Bernitsas ini tidak mirip ikan, dia mengatakan suatu saat nanti akan menyerupainya. Prototip mesinnya saat ini di lab-nya hanya berupa satu silinder yang terhubung dengan pegas. Silinder tersebut berposisi horisontal melintang aliran air dalam sebuah tangki seukuran trailer. Air dalam tangki tersebut mengalir dengan kecepatan 1,5 knot.

Cara kerja VIVACE adalah sebagai berikut :

Adanya silinder dalam aliran air akan menyebabkan pusaran pada bagian atas dan bawah silinder. Pusaran-pusaran tersebut akan mendorong dan menarik silinder pasif tersebut ke atas dan ke bawah pada pegasnya, yang akan menimbulkan energi mekanik. Kemudian, mesin mengubah energi mekanik tersebut menjadi listrik.

Cukup beberapa silinder saja sudah mencukupi untuk menyuplai kapal yang sedang berhenti, atau mercusuar, kata Bernitsas. Silinder-silinder ini dapat disusun berderet. Dia juga mengatakan mesinnya bisa mencukupi untuk 100.000 rumah.

Oleh karena osilasi pada VIVACE ini lambat, diteorikan bahwa sistem tersebut tidak akan membahayakan kehidupan air, sebagaimana bendungan dan turbin mampu merusak.

Bernitsas mengatakan energi VIVACE akan bernilai 5,5 sen per kilowatt jam. Energi angin bernilai 6,9 sen per kilowatt jam, 4,6 sen untuk tenaga nuklir dan 16-48 sen untuk tenaga surya (tergantung tempat).

Bernitsas mengatakan, bila kita mampu mendulang 0,1% energi samudera saja, kiata akan mampu mencukupi 15 milyar orang.

Akhir-akhir ini banyak ilmuwan telah melakukan bermacam penelitian yang akhirnya menemukan sebuah alat yang mampu menciptakan tenaga listrik dari sungai Detroit. Mereka telah bekerja selama 18 bulan untuk membuat pilot projeknya.

Label:

Metode Baru Pendorong Pesawat Luar Angkasa

ScienceDaily – Dalam film Star Wars tidak pernah nampak sekalipun pesawat-pesawat antar bintang digerakkan dengan roket. Bahkan dalam film tersebtu kita jumpai sebuah pesawat kemudi tunggal yang ukurannnya kecil bisa lepas landas dari sebuah planet kemudian sampai ke luar angkasa dan kemudian bergerak dengan warp-speed menuju sistem bintang lain.

Meskipun itu hanya dalam sebuah film, ternyata beberapa waktu yang lalu beberapa peneliti dari NASA Amerika menemukan sebuah metode baru pendorong pesawat luar angkasa yang tidak memakai tenaga roket. Sistem pendorong tersebut diberi nama M2P2 (Mini-Magnetospheric Plasma Propulsion). Para ilmuwan Universitas Washington meyakini, sistem M2P2 tersebut bisa memberikan daya dorong yang sangat besar pada pesawat, bahkan sampai 10 kali kecepatan pesawat luar angkasa saat ini.

NASA Institute for Advanced Concepts beberapa waktu yang lalu memberikan hibah sebesar $500.000 kepada tim UW yang dikepalai oleh ahli geofisika Robert Winglee untuk melanjutkan riset tentang Mini-Magnetospheric Plasma Propulsion. Bila kerja laboratorium dan pengujian luar angkasa sukses, dia mengharapkan dalam 10 tahun pesawat yang ditenagai dengan M2P2 bisa diluncurkan, yang akan menjadi pesawat pertama yang akan meninggalkan sistem Tata Surya.

Meskipun hal itu memerlukan kerja keras, dengan memperhatikan pesawat luar angkasa yang kita luncurkan dengan Voyager 1 pada tahun 1977 sekarang berjarak 6,8 juta mil dari bumi, yang masih dalam lingkungan Tata Surya.

Winglee, seorang Lektor geofisika, telah mengerjakan M2P2 selama 9 bulan bersama dengan profesor geofisika George Parks dan John Slough, seorang Lektor riset pada aeronautika dan astronautika. Mereka mengembangkan sebuah prototip dan menyiapkan pengujian di Laboratorium Redmond Plasma Physics UW.

Sistem mereka akan menggunkan sebuah kamar plasma seukuran 10 x 10 inch, yang dikaitkan pada sebuah pesawat. Sel-sel surya dan koil-koil solenoid akan memberi tenaga dengan menciptakan plasma termagnetisasi dengan rapat, atau gas terionkan, yang akan melontarkan sebuah medan elektromagnet sejauh radius 10 – 12 mil di sekeliling pesawat. Medan magnet tersebut akan berinteraksi dengan angin matahari sehingga mucul gaya dorong.

Pembuatan medan magnet ini serupa dengan pembentangan sebuah layar raksasa yang akan didorong oleh angin matahari, yang bergerak dengan kecepatan 780.000 sampai 1,8 juta mil per jam. Itu adalah energi yang cukup untuk menggerakkan pesawat luar angkasa seberat 300 pon pada kecepatan sampai 180.000 mil per jam atau 4,3 juta mil per hari. Sementara pesawat ulang alik saat ini terbang dengan kecepatan hanya 18.000 mil per jam atau 430.000 mil per hari.

Pada kecepatan tersebut, pesawat luar angkasa yang ditenagai M2P2 yang diluncurkan hari ini akan mencapai Voyager 1 dalam 8 tahun, sementara Voyager 1 sendiri perlu waktu 22 tahun untuk mencapai posisinya sekarang (publikasi ini ditulis tahun 1999). Ide pembuatan M2P2 muncul dari penelitian jet plasma yang terbentuk di sekitar bintang muda, dan direalisasikan dengan didanai oleh NASA.

Sistem tersebut memiliki nilai keuntungan melebihi layar matahari (solar sail), yang ukurannya sangat besar, lembaran material tipis reflektif seperti Mylar yang mampu menjadikan cahaya matahari menjadi gaya dorong. Tabung plasma M2P2 jauh lebih ringan dan ramping daripada layar matahari. Hanya butuh tenaga beberapa kilowatt saja dengan tambahan 100 pon propelan. Meskipun alat ini tergolong mahal, namun dengannya akan sangat menghemat biaya keseluruhan misi dan akan mempermudah akses ke planet-planet, begitu kata Winglee.

Meski demikian, masih banyak pula orang yang mengatakan, “Itu masih kurang cepat.” (karena mereka sudah tercekoki dengan film Star Trek). Orang-orang tersebut menginginkan sebuah kecepatan warp sehingga mereka bisa pergi ke sistem tata surya yang lain.

Akan tetapi, warp drive pada Star Trek dan pendorong hyperdrive pada film Star Wars, yang keduanya bisa mencapai kecepatan cahaya (186.000 mil per detik dalam vakum), tidak mungkin dicapai dengan pemahaman sekarang akan hukum-hukum fisika.

Untuk sekarang, setidaknya, pendorong plasma mampu menjadi pilihan terbaik untuk sistem pendorong fiksi. Jika pengujian M2P2 berhasil, Winglee mengharapkan penggunaan perdana mesin tersebut akan segera tergapai.



Label:

Teknik Terbang Burung Walet


Pernahkah anda melihat tornado atau pusaran angin puting-beliung? Semua benda yang berada di sekeliling tornado akan dibawa terbang masuk ke dalam pusarannya, seperti dihisap ke arah sumbu tornado. Mengapa begitu? Karena tekanan udara di dalam tornado lebih kecil dari tekanan udara di sekitarnya. Perbedaan tekanan udara yang ditimbulkan cukup besar untuk menarik benda-benda seperti drum minyak, atap rumah, dan bahkan seekor kerbau ke dalam pusaran tornado. Lalu, apa hubungannya dengan burung walet? Apakah burung walet mampu terbang menembus pusaran tornado? Begini ceritanya.

Ada jenis pesawat jet tempur yang dilengkapi dengan sepasang sayap yang dapat dilipat ke belakang dan dikembangkan lagi. Jenis sayap seperti ini disebut swept-wing, dan sayap jenis inilah yang memberikan kemampuan terbang cepat dan membelok tajam bagi pesawat jet tempur – seperti kemampuan seekor burung walet. Lucunya, para insinyur penerbangan sudah memanfaatkan keunikan burung ini, jauh sebelum para ilmuan memahami dan menjelaskannya. Bukan saja peswat jet tempur Amerika, F-14 Tomcat yang menggunakan teknik burung walet ini, tetapi pesawat jet penumpang jenis Concorde juga.

Kedua jenis pesawat terbang di atas membutuhkan kecepatan tinggi ketika terbang, tetapi juga kemampuan untuk memperlambat kecepatannya ketika hendak mendarat, tanpa kehilangan ketinggian, atau lebih baik dikatakan tanpa kehilangan kemampuan untuk mempertahankan ketinggian yang tepat, sebab mengurangi kecepatan berarti mengurangi daya dorong ke atas dari udara. Pernahkah anda memperhatikan seekor burung ketika hendak mendarat atau hinggap di cabang pohon? Itu juga adalah salah satu dari rahasia burung walet yang akan diungkap di sini.

Sejak tahun 1996, para ilmuan sudah tahu bahwa serangga menggunakan gejala tornado yang disebut vortex, yaitu aliran udara yang berputar, untuk terbang. Tetapi, menghubungkan bentuk khas sayap burung dengan vortex-nya serangga adalah sesuatu hal yang hampir mustahil untuk diperagakan dan diamati.

Sekitar tahun 2004, para ilmuan membuat model sayap burung walet dan menempatkannya di dalam lorong air yang berfungsi seperti lorong udara (air-tunnel). Air sengaja diberi warna agar aliran air yang timbul bisa lebih mudah diamati. Ternyata, model sayap walet dengan bentuk khusus ini menimbulkan semacam aliran vortex di bagian atas model sayap tersebur. Seperti pada tornado, tekanan rendah di dalam vortex seperti menghisap sayap burung walet ke atas.

Vortex yang terlihat di dalam percobaan water-tunnel tersebut menghasilkan dua hal, masing-masing daya angkat yang besar dan hambatan yang besar untuk semua kecepatan. Ketika terbang cepat, baik burung maupun pesawat jet dengan swept-wings akan melipat sayapnya ke belakang. Ketika akan tinggal landas atau mendarat, sayap dibentangkan kembali untuk mendapatkan daya angkat udara yang lebih besar.

Sama halnya, baik F-14 Tomcat maupun burung walet mampu membelok tajam ke atas dengan mengatur sayapnya untuk menghasilkan tornado yang menariknya ke atas. Kemampuan maneuver semacam inilah yang memampukan burung walet untuk menyambar serangga di udara. Ketika burung walet hendak mendarat, hambatan udara yang dihasilkan memperlambat terbangnya, tetapi daya angkat udara yang dihasilkan menahannya untuk tidak jatuh ke tanah karena kecepatan yang rendah, tetapi bisa mencapai dahan pohon yang ditujunya. Hal ini juga memberikan penjelasan, bagaimana kira-kira burung yang lain mendarat.

Lebih dari sayap serangga atau sayap pesawat jet tempur, sayap burung terdiri dari dua bagian. Bagian yang dekat ke badannya adalah arm-wing yang berfungsi untuk menghasilkan tekanan udara ke atas secara konvensional seperti layaknya sayap pesawat terbang. Bagian sebelah luar disebut hand-wing, yang memiliki sisi depan yang tajam, sehingga mampu menghasilkan tornado dalam posisi sedikit miring. Sementara sayap serangga harus membentuk kemiringan sebesar 25o untuk menghasilkan vortex, sayap burung walet hanya membutuhkan kemiringan 5 – 10o saja.

Selain burung albatross dan burung laut raksasa (giant petrel), semua burung memiliki konstruksi sayap yang kurang-lebih-sama. Oleh sebab itu, teknik terbang burung walet ini dapat diterapkan ke burung-burung tersebut juga.

Penjelasan di atas ini pasti akan mengubah pengertian banyak orang dalam hal bagaimana burung terbang. Tetapi haruslah diingat bahwa alam selalu berada di depan para insinyur/teknisi dan ilmuan. Di dalam hal penggunaan teknik tornado atau vortex di dalam tebang akrobatik burung walet, para ilmuan hanya baru mengupas bagian permukaan dari keseluruhan rahasia alam burung-burung. Ada banyak hal yang masih harus diungkap dan salah satunya adalah, bagaimana burung walet mengatur sayapnya untuk meningkatkan kemampuan terbangnya. Dengan terungkapnya ‘kontrol terbang burung walet’, mungkin saja terjadi bahwa di masa depan nanti, para insinyur akan dapat menciptakan semacam alat terbang dengan kecepatan, kelincahan, efisiensi dan jarak lepas-landas dan mendarat yang pendek seperti yang dimiliki serangga dan burung. Siapa tahu?


Label:

Tata Surya



Tata Surya (bahasa Inggris: solar system) terdiri dari sebuah bintang yang disebut matahari dan semua objek yang yang mengelilinginya. Objek-objek tersebut termasuk delapan buah planet yang sudah diketahui dengan orbit berbentuk elips, meteor, asteroid, komet, planet-planet kerdil/katai, dan satelit-satelit alami.

Tata surya dipercaya terbentuk semenjak 4,6 milyar tahun yang lalu dan merupakan hasil penggumpalan gas dan debu di angkasa yang membentuk matahari dan kemudian planet-planet yang mengelilinginya.

Tata surya terletak di tepi galaksi Bima Sakti dengan jarak sekitar 2,6 x 1017 km dari pusat galaksi, atau sekitar 25.000 hingga 28.000 tahun cahaya dari pusat galaksi. Tata surya mengelilingi pusat galaksi Bima Sakti dengan kecepatan 220 km/detik, dan dibutuhkan waktu 225–250 juta tahun untuk untuk sekali mengelilingi pusat galaksi. Dengan umur tata surya yang sekitar 4,6 milyar tahun, berarti tata surya kita telah mengelilingi pusat galaksi sebanyak 20–25 kali dari semenjak terbentuk.

Tata surya dikekalkan oleh pengaruh gaya gravitasi matahari dan sistem yang setara tata surya, yang mempunyai garis pusat setahun kecepatan cahaya, ditandai adanya taburan komet yang disebut awan Oort. Selain itu juga terdapat awan Oort berbentuk piring di bagian dalam tata surya yang dikenali sebagai awan Oort dalam.

Disebabkan oleh orbit planet yang membujur, jarak dan kedudukan planet berbanding kedudukan matahari berubah mengikut kedudukan planet di orbit.

Asal Usul Tata Surya
Banyak hipotesis tentang asal usul tata surya telah dikemukakan para ahli, diantaranya :


[sunting] Hipotesis Nebula
Hipotesis nebula pertama kali dikemukakan oleh Immanuel Kant(1724-1804) pada tahun 1775. Kemudian hipotesis ini disempurnakan oleh Pierre Marquis de Laplace pada tahun 1796. Oleh karena itu, hipotesis ini lebih dikenal dengan Hipotesis nebula Kant-Laplace. Pada tahap awal tata surya masih berupa kabut raksasa. Kabut ini terbentuk dari debu, es, dan gas yang disebut nebula. Unsur gas sebagian besar berupa hidrogen. Karena gaya gravitasi yang dimilikinya, kabut itu menyusut dan berputar dengan arah tertentu. Akibatnya, suhu kabut memanas dan akhirnya menjadi bintang raksasa yang disebut matahari. Matahari raksasa terus menyusut dan perputarannya semakin cepat. Selanjutnya cincin-cincin gas dan es terlontar ke sekeliling matahari. Akibat gaya gravitasi, gas-gas tersebut memadat seiring dengan penurunan suhunya dan membentuk planet dalam. Dengan cara yang sama, planet luar juga terbentuk.


[sunting] Hipotesis Planetisimal
Hipotesis planetisimal pertama kali dikemukakan oleh Thomas C. Chamberlain dan Forest R. Moulton pada tahun 1900. Hipotesis planetisimal mengatakan bahwa tata surya kita terbentuk akibat adanya bintang lain yang hampir menabrak matahari.


[sunting] Hipotesis Pasang Surut Bintang
Hipotesis pasang surut bintang pertama kali dikemukakan oleh James Jean dan Herold Jaffries pada tahun 1917. Hipotesis pasang surut bintang sangat mirip dengan hipotesis planetisimal. Namun perbedaannya terletak pada jumlah awalnya matahari.





[sunting] Hipotesis Kondensasi
Hipotesis kondensasi mulanya dikemukakan oleh astronom Belanda yang bernama G.P. Kuiper (1905-1973) pada tahun 1950. Hipotesis kondensasi menjelaskan bahwa tata surya terbentuk dari bola kabut raksasa yang berputar membentuk cakram raksasa.


[sunting] Hipotesis Bintang Kembar
Hipotesis bintang kembar awalnya dikemukakan oleh Fred Hoyle (1915-2001) pada tahun 1956. Hipotesis mengemukakan bahwa dahulunya tata surya kita berupa dua bintang yang hampir sama ukurannya dan berdekatan yang salah satunya meledak meninggalkan serpihan-serpihan kecil. serpihan itu akan terperangkap oleh gravitasi bintang yang tidak meledak dan mulai mengelilinginya


[sunting] Sejarah penemuan
Lima planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet.

Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad lalu membawa manusia untuk memahami benda-benda langit terbebas dari selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia "lebih tajam" dalam mengamati benda langit yang tidak bisa diamati melalui mata telanjang.

Karena teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap Matahari. Penalaran Venus mengitari Matahari makin memperkuat teori heliosentris, yaitu bahwa matahari adalah pusat alam semesta, bukan Bumi, yang digagas oleh Nicolaus Copernicus (1473-1543) sebelumnya. Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.

Teleskop Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2 kali jarak orbit Bumi-Yupiter.

Perkembangan teleskop juga diimbangi pula dengan perkembangan perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya, Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya

Pada 1781, William Hechell (1738-1782) menemukan Uranus. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu. Neptunus ditemukan pada Agustus 1846. Penemuan Neptunus ternyata tidak cukup menjelaskan gangguan orbit Uranus. Pluto kemudian ditemukan pada 1930.

Pada saat Pluto ditemukan, ia hanya diketahui sebagai satu-satunya objek angkasa yang berada setelah Neptunus. Kemudian pada 1978, Charon, satelit yang mengelilingi Pluto ditemukan, sebelumnya sempat dikira sebagai planet yang sebenarnya karena ukurannya tidak berbeda jauh dengan Pluto.

Para astronom kemudian menemukan sekitar 1.000 objek kecil lain di belakang Neptunus (disebut objek trans-Neptunus) yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 objek serupa yang dikenal sebagai objek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari objek-objek trans-Neptunus). Belasan benda langit termasuk dalam Obyek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan 2003 EL61 (1.500 km pada Mei 2004).

Penemuan 2003 EL61 cukup menghebohkan karena Obyek Sabuk Kuiper ini diketahui juga memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunya Xena. Selain lebih besar dari Pluto, obyek ini juga memiliki satelit.


[sunting] Daftar jarak planet
Daftar planet dan jarak rata-rata planet dengan matahari dalam tata surya adalah seperti berikut:

57,9 juta kilometer ke Merkurius
108,2 juta kilometer ke Venus
149,6 juta kilometer ke Bumi
227,9 juta kilometer ke Mars
778,3 juta kilometer ke Jupiter
1.427,0 juta kilometer ke Saturnus
2.871,0 juta kilometer ke Uranus
4.497,0 juta kilometer ke Neptunus

Terdapat juga lingkaran asteroid yang kebanyakan mengelilingi matahari di antara orbit Mars dan Jupiter.

Karena rotasinya terhadap sumbu masing-masing, garis khatulistiwa menjadi lingkar terpanjang yang terdapat di setiap planet dan bintang.



Label: